Zellfreie fetale DNA in der mütterlichen Zirkulation: Bedeutungszugewinn für die Schwangerenbetreuung und die Geburt

Autor: Alexander Strauss

  1. Schmorl CG. Pathologisch-anatomische Untersuchungen über Puerperaleklampsie. Verlag FCW Vogel, Leipzig, 1893: 1–107
  2. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l‘homme. C. R. Seances Soc. Biol. Fil. 1948; 142: 241–243
  3. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997; 350(9076): 485–487
  4. Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62: 768–775
  5. Birch L, English CA, O’Donoghue K, Barigye O, Fisk NM, Keer JT. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 2005; 51: 312–320
  6. Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat Diagn. 2012; 32(9): 840–845
  7. Khosrotehrani K, Wataganara T, Bianchi DW, Johnson KL. Fetal cell-free DNA circulates in the plasma of pregnant mice: relevance for animal models of fetomaternal trafficking. Hum Reprod 2004; 19: 2460–2464
  8. Mitsunaga F, Ueiwa M, Kamanaka Y, Morimoto M, Nakamura S. Fetal sex determination of macaque monkeys by a nested PCR using maternal plasma. Exp Anim 2010; 59: 255–260
  9. Mersy E, Smits LJ, van Winden LA, de Die-Smulders CE; South-East Netherlands NIPT Consortium, Paulussen AD, Macville MV, Coumans AB, Frints SG. Noninvasive detection of fetal trisomy 21: systematic review and report of quality and outcomes of diagnostic accuracy studies performed between 1997 and 2012. Hum Reprod Update. 2013; 19(4): 318–329
  10. Gil MM, Akolekar R, Quezada MS, Bregant B, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: meta-analysis. Fetal Diagn Ther. 2014; 35(3): 156–173
  11. Maul H, Berger R, Kozlowski P, Lang U, Hösli I, Arabin B. Congress of Society of Maternal-Fetal Medicine. Frauenarzt. 2014(7); 55(7): 678–679
  12. Wilson KL, Czerwinski JL, Hoskovec JM, Noblin SJ, Sullivan CM, Harbison A, Campion MW, Devary K, Devers P, Singletary CN.NSGC practice guideline: prenatal screening and diagnostic testing options for chromosome aneuploidy. J Genet Couns. 2013; 22(1): 4–15
  13. Majer S, Bauer M, Magnet E, et al. Maternal urine for prenatal diagnosis — an analysis of cell-free fetal DNA in maternal urine and plasma in the third trimester. Prenat Diagn 2007; 27: 1219–1223
  14. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet 1998; 352: 1904-1905. [Erratum, Lancet 1999; 354: 780]
  15. Scharfe-Nugent A, Corr SC, Carpenter SB, et al. TLR9 provokes inflammation in response to fetal DNA: mechanism for fetal loss in preterm birth and preeclampsia. J Immunol 2012; 188: 5706–5712
  16. Futch T, Spinosa J, Bhatt S, de Feo E, Rava RP, Sehnert AJ. Initial clinical laboratory experience in noninvasive prenatal testing for fetal aneuploidy from maternal plasma DNA samples. Prenat Diagn. 2013; 33(6): 569–574
  17. Morris M, Meyer-Kleine C. Noninvasiver Pränataltest (NIPT) Wie verlässlich ist der Nachweis fetaler Trisomien aus mütterlichem Blut? Gynäkologie + Geburtshilfe. 2014; 19(2): 22–27
  18. Salomon LJ, Alfirevic Z, Audibert F, Kagan KO, Yeo G, Raine-Fenning N; ISUOG Clinical Standards Committee. ISUOG consensus statement on the impact of non-invasive prenatal testing (NIPT) on prenatal ultrasound practice. Ultrasound Obstet Gynecol. 2014; 44(1): 122–123
  19. Phillippe M. Cell-free fetal DNA--a trigger for parturition. N Engl J Med. 2014; 370(26): 2534–2536

Gametentransport, Befruchtung und frühe Embryonalentwicklung – neue Aspekte mittels Live Cell Imaging

Autorin: Sabine Kölle

 

  1. Kölle S, Reese S, Kummer W. New aspects of gamete transport, fertiliyation, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology 2010; 73: 786–795.
  2. Ezzati M, Djahanbakhch O, Arian S, Carr  BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod genet 2014; 31: 1337–1347.
  3. Talbot P, Shur BD, Myles, DG. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 2003; 68: 1–9.
  4. Pulkinnen MO. Oviductal function is critical for very early human life (1995). Ann Med 1995; 27: 307–310.
  5. McComb P, Langley L, Villalon L, Verdugo P. The oviductal cilia and Kartagener´s syndrome. Fertil Steril 1986; 46: 412–416.
  6. Umezu T, Hanazono M, Aizawa S, Tomooka Y. Characterization of newly established clonal oviductal cell lines and differential hormonal regulation of gene expression. In Vitro Cell Dev Biol Anim 2003; 39: 146–156.
  7. Bongso A, Chye NS, Sathananthan H, Lian NP, Rauff M, Ratnam SS. Establishment of human ampullary cell cultures. Hum Reprod 1989; 5: 486–494.
  8. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal songraphy of uterine peristalsis and hystersalpingoscintigraphy. Hum Reprod 1996; 11: 627–632.
  9. Jansen RPS. Fallopian tube isthmic mucus and ovum transport. Science 1978; 201: 349–351.
  10. Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction and effects of the early embryo in the oviduct: Ex vivo analyses using a new digital videomicroscopic system in the cow. Biol Reprod 2009; 81: 267–274.
  11. Hunter RHF, Wilmut I.Sperm transport in the cow: periovulatory redistribution of viable cells within the oviduct. Reprod Nutr Dev 1984; 24: 597–608.
  12. Hunter RHF. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J Reprod Fertil 1981; 63: 109–117.
  13. Hunter RHF, Nichol R. Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus. J Exp Zool 1983; 228: 121–128.
  14. Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol 2008; 52: 455–462.
  15. Lefebvre R, Lo MC, Suarez SS. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol Reprod 1997; 56: 1198–1204.
  16. Green CE, Bredl J, Holt Wv, Watson PF, Fazeli A. Carbohydrate mediation of boar sperm binding to oviductal cells in vitro. Reproduction 2001; 122: 305–315.
  17. Lefebvre R, De Mott RP, Suarez SS, Samper JC. Specific inhibition of equine sperm binding to oviductal epithelium. Equine Reprod VI, Biol Reprod Mono 1995 ;1: 689–696
  18. Talbot P, Geiske C, Knoll M. Oocyte pick-up by the mammalian oviduct. Mol Biol Cell 1999; 19: 5–8.
  19. Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pelucida interactions, and sperm-egg fusion. Biol Reprod 2003; 68: 1–9.
  20. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 2001; 122: 519–526.
  21. Kodithuwakku SP, Miyamoto A, Wijayagunawardane PB. Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells. Reproduction  2007; 133: 1087–1094.
  22. Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke I, Barratt CL. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum Reprod 1993; 8: 2019–2026.
  23. Sagare-Patil V, Vernekar M, Galvankar M, Modi D. Progesterone utilizes the PI3K-AKT pathway in human spermatozoa to regulate motility and hyperactivation but not acrosome reaction. Mol Cell Endocrinol 2013; 374: 82-91.
  24. Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Rerproductive BioMedicine Online 2015; 30: 28–38.
  25. Kölle S. Live Cell Imaging in the oviduct. Methods  in Enzymology 2012; 506: 409–417.

 

 

Die Auswirkungen von Schwangerschaft und Geburt auf den Beckenboden

Autor: Markus Hübner

 

  1. Hübner M, Reisenauer C, Abele H. Welchen Stellenwert hat die primäre Sectio caesarea? Geburtsh Frauenheilk. 2010;70:911–3.
  2. Nygaard I, Barber MD, Burgio KL, Kenton K, Meikle S, Schaffer J, et al. Prevalence of symptomatic pelvic floor disorders in US women. JAMA. 2008;300(11):1311–6.
  3. Lukacz ES, Lawrence JM, Contreras R, Nager CW, Luber KM. Parity, mode of delivery, and pelvic floor disorders. Obstet Gynecol. 2006;107(6):1253–60.
  4. Rortveit G, Daltveit AK, Hannestad YS, Hunskaar S. Urinary incontinence after vaginal delivery or cesarean section. N Engl J Med. 2003;348(10):900–7.
  5. Hannah ME, Hannah WJ, Hodnett ED, Chalmers B, Kung R, Willan A, et al. Outcomes at 3 months after planned cesarean vs planned vaginal delivery for breech presentation at term: the international randomized Term Breech Trial. JAMA. 2002;287(14):1822–31.
  6. Hannah ME, Whyte H, Hannah WJ, Hewson S, Amankwah K, Cheng M, et al. Maternal outcomes at 2 years after planned cesarean section versus planned vaginal birth for breech presentation at term: the international randomized Term Breech Trial. Am J Obstet Gynecol. 2004;191(3):917–27.
  7. Borello-France D, Burgio KL, Richter HE, Zyczynski H, Fitzgerald MP, Whitehead W, et al. Fecal and urinary incontinence in primiparous women. Obstet Gynecol. 2006;108(4):863–72.
  8. Margulies RU, Hsu Y, Kearney R, Stein T, Umek WH, DeLancey JO. Appearance of the levator ani muscle subdivisions in magnetic resonance images. Obstet Gynecol. 2006;107(5):1064–9.
  9. Margulies RU, Huebner M, DeLancey JO. Origin and insertion points involved in levator ani muscle defects. Am J Obstet Gynecol. 2007;196(3):251 e1–5.
  10. Tunn R. Morphologie des Stressharninkontinenz-Kontrollsystems und seine pathomorphologischen Veränderungen bei Stressharninkontinenz. Habilitationsschrift. Berlin: Humboldt-Universität zu Berlin; 2002.
  11. Kearney R, Miller JM, Ashton-Miller JA, DeLancey JO. Obstetric factors associated with levator ani muscle injury after vaginal birth. Obstet Gynecol. 2006;107(1):144–9.
  12. Lammers K, Futterer JJ, Prokop M, Vierhout ME, Kluivers KB. Diagnosing pubovisceral avulsions: a systematic review of the clinical relevance of a prevalent anatomical defect. International urogynecology journal. 2012;23(12):1653–64.
  13. DeLancey JO, Morgan DM, Fenner DE, Kearney R, Guire K, Miller JM, et al. Comparison of levator ani muscle defects and function in women with and without pelvic organ prolapse. Obstet Gynecol. 2007;109(2 Pt 1):295–302.
  14. Dietz HP, Chantarasorn V, Shek KL. Levator avulsion is a risk factor for cystocele recurrence. Ultrasound Obstet Gynecol. 2010;36(1):76–80.
  15. Morgan DM, Larson K, Lewicky-Gaupp C, Fenner DE, DeLancey JO. Vaginal support as determined by levator ani defect status 6 weeks after primary surgery for pelvic organ prolapse. Int J Gynaecol Obstet. 2011;114(2):141–4.
  16. Ulrich D, Edwards SL, Su K, White JF, Ramshaw JA, Jenkin G, et al. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PloS one. 2014;9(4):e93172.
  17. Huebner M, Antolic A, Tunn R. The impact of pregnancy and vaginal delivery on urinary incontinence. Int J Gynaecol Obstet. 2010;110(3):249–51.